9 2020

ВЛИЯНИЕ ЗАМОРАЖИВАНИЯ НА КАЧЕСТВО МОЛОКА КОРОВ

ЕФИМОВА Любовь Валентиновна, Красноярский научно-исследовательский институт животноводства – обособленное подразделение ФИЦ КНЦ СО РАН

ЗАЗНОБИНА Татьяна Вячеславовна, Красноярский научно-исследовательский институт животноводства – обособленное подразделение ФИЦ КНЦ СО РАН

ГАТИЛОВА Елена Владимировна, Красноярский научно-исследовательский институт животноводства— обособленное подразделение ФИЦ КНЦ СО РАН

ИВАНОВА Ольга Валерьевна, Красноярский научно-исследовательский институт животноводства — обособленное подразделение ФИЦ КНЦ СО РАН

Молоко имеет малый срок хранения, поэтому актуальным является вопрос его заморозки и длительного хранения в замороженном состоянии. Проведено исследование влияния замораживания на качество молока после его размораживания у коров-матерей и коров-дочерей красно-пестрой породы. Показано изменение показателей качества молока у коров двух возрастных групп (матерей и их дочерей) после пяти месяцев хранения в замороженном состоянии. Установлена высокая корреляционная зависимость между показателями качества молока до и после замораживания. Влияние фактора «заморозка» на показатели качества молока оказалось статистически значимым, фактора «поколение» — не достоверным.

Введение. Одной из основных причин исследования влияния процесса замораживания на качество молока является малый срок его хранения. Поскольку молоко представляет собой многокомпонентную органическую жидкость, его переход в твердое состояние и обратно в жидкое не может протекать без изменения физико-химических показателей. Если процесс заморозки протекает медленно, может наблюдаться расслоение жидкости и денатурация белков и жиров. Обратное размораживание нередко приводит к появлению органолептических пороков из-за появления капель жира и хлопьев казеина вследствие того, что кристаллизованная вода нарушает целостность мицелл казеина, вызывая денатурацию белков [3]. При этом молоко становится водянистым и приобретает сладковатый привкус.

Данных об изменении качества молока в процессе заморозки в литературе встречается достаточно мало. Есть сведения, что при быстрой заморозке и дефростировании образцов молока различной жирности его качество, за исключением показателя СОМО, не изменяется [3]. Также встречаются данные, что молоко коров различных пород может по-разному переносить влияние замораживания [1].

При изучении физико-химических свойств кобыльего молока, предварительно подвергнутого заморозке, было установлено, что при длительном хранении, превышающем 2 месяца, происходило постепенное, хотя и не критическое, снижение содержания белков (в том числе казеина), увеличение содержания

сахаров и повышение кислотности. При этом значительно снижалось содержание витамина С (до 35 %) [2]. Некоторые исследователи отмечают, что сам процесс замораживания не влияет на биохимический состав молока; все изменения наступают в результате хранения продукта.

Цель настоящего исследования — определить влияние замораживания на качество молока коров красно-пестрой породы.

Методика исследований. Экспериментальные исследования проводили в АО «Арефьевское» Канского района Красноярского края. Объекты исследований – коровы красно-пестрой породы (матери и их дочери) и молоко. Для опыта сформировали две группы коров (матерей и дочерей) по 14 голов в каждой. Коровы-матери были в возрасте третьей лактации, коровы-дочери – в возрасте первой и второй лактаций.

Отбор проб молока проводили в стойловый период содержания (март) коров, во время контрольной дойки.

Пробы молока исследовали в Красноярском научно-исследовательском институте животноводства ФИЦ КНЦ СО РАН (КрасНИИЖ). Оно было заморожено при температуре –18 °С и хранилось в морозильной камере в течение 5 месяцев. Размораживание молока осуществляли при комнатной температуре.

Физико-химические показатели определяли с помощью анализатора молока Lactoscan^{тм} FARM Eco, активную кислотность – pH-метром Testo 206 ph1, термоустойчивость – методом алкогольной пробы по ГОСТ 25228–82, класс

молока по сычужно-бродильной пробе – по ГОСТ 32901-2014.

Биометрическую обработку данных проводили в компьютерной программе Microsoft Office Excel с использованием методов вариационной статистики. Достоверность разницы между средними значениями признаков в группах устанавливали по t-критерию Стьюдента, при этом разницу считали статистически значимой при p<0,05.

Для определения влияния факторов «поколение» и «заморозка» на качество молока проводили двухфакторный дисперсионный анализ. Градациями фактора «поколение» были показатели матерей и дочерей, фактора «заморозка» – соответственно показатели до и после заморозки. Достоверность силы влияния фактора устанавливали с помощью критерия Фишера (F). При этом фактические значения F сравнивали с табличными, которые составляли для трех порогов вероятности ($P_{0,05-0,01-0,001}$) – 2,6-3,7-5,4. Числа степеней свободы (υ_x и υ_z) 3 и 52 соответственно.

Результаты исследований. В ходе исследований установлено, что после пяти месяцев замораживания в молоке коров происходит значительное снижение содержания жира, белка и лактозы, незначительное снижение показателей кислотности и температуры замерзания, существенное повышение содержания сухого обезжиренного молочного остатка (СОМО). Содержание воды возрастает более чем в шесть раз, содержание солей — почти в три раза. При этом молоко коров-дочерей оказалось более чувствительным к замораживанию, чем молоко коров-матерей. Это особенно отразилось на содержании жира и белка (табл. 1).

Одним из основных технологических свойств молока, которое учитывают при его переработке, является термоустойчивость (рис. 1).

В результате исследования было установлено, что в группе коров-дочерей только 64 % особей продуцировали молоко, сохраняющее термоустойчивость после процесса замораживания и последующего дефростирования. До замораживания термоустойчивостью обладало молоко

Таблица 1

Физико-химические и технологические свойства молока до и после замораживания ($M\pm m$)

	M	атери	Дочери		
Показатель	молоко до замораживания	молоко после замораживания	молоко до замораживания	молоко после замораживания	
Суточный удой, кг	20,5	56±1,19	20,17±1,11		
Массовая доля, %: жира	3,97±0,21	3,30±0,29	3,93±0,17	3,10±0,20	
белка	4,07±0,28	3,15±0,39	4,01±0,23	2,88±0,27	
лактозы	5,63±0,36	4,46±0,49	5,54±0,29	4,14±0,34	
СОМО	8,36±0,07	8,48±0,06	8,35±0,07	8,47±0,09	
воды	0,60±0,37	4,00±2,31	0,74±0,76	4,64±1,72	
солей	0,37±0,12	0,91±0,24	0,26±0,11	0,99±0,18	
Температура замерзания, °С	0,60±0,03	0,54±0,03	0,59±0,02	0,51±0,02	
Плотность, °А	28,06±0,31	28,96±0,34	28,09±0,23	29,18±0,27	
Активная кислотность	6,72±0,02	6,64±0,02	6,73±0,01	6,61±0,01	
Класс сыропригодности	II	II	III	II	

9

71~% исследуемых животных (на 17~% больше). В группе коров-матерей данный показатель после замораживания снизился только на 8~% (с 79~до 71~%).

Для выявления зависимости между показателями качества молока у коров-матерей и коровдочерей до и после заморозки был рассчитан коэффициент корреляции для каждого показателя (рис. 2).

Для большинства показателей коэффициенты корреляции оказались высокими – более 0,7, т.е. показатели, у которых значения были высокими до заморозки молока, сохранили высокие значения и после заморозки. Наиболее низкие коэффициенты корреляции для коров-матерей и коров-дочерей 0,59 и 0,63 соответственно были установлены для показателя воды.

Методом двухфакторного дисперсионного анализа было определено влияние факторов «поколение» и «заморозка» на качество молока. В результате было установлено, что фактор «поколение» существенно повлиял только на содержание СОМО в молоке: сила влияния

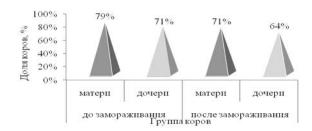


Рис. 1. Доля коров, продуцирующих термоустойчивое молоко

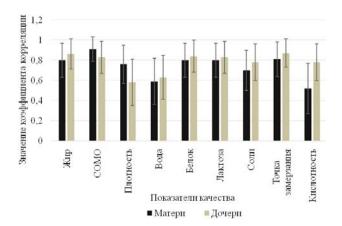


Рис. 2. Корреляция между показателями качества молока до и после заморозки

 (η^2) фактора составила 4,7 % (p<0,05). Фактор «заморозка» повлиял на все представленные в табл. 2 показатели, за исключением СОМО (η^2 = 13,2-1,4 %; p<0,001).

Заключение. Процесс замораживания оказывает различное влияние на качество молока коров-матерей и коров-дочерей красно-пестрой породы. В целом, молоко коров-матерей оказалось более устойчивым к длительному воздействию отрицательных температур.

Все показатели качества молока претерпели изменения в результате длительного замораживания. Наиболее существенно изменилось содержание воды – увеличилось более чем в шесть раз.

В результате процесса замораживания и последующего дефростирования молоко 7–8 % коров теряет термоустойчивые свойства. Завитаблица 2

Результаты двухфакторного дисперсионного анализа влияния факторов «поколение» и «заморозка» на качество молока

Показатель		Ф	Совместное действие факторов			
	поколение (матери-дочери)				заморозка молока	
	η², %	F	η², %	F	η², %	F
Жир	0,5	0,31	18,9	12,27***	0,2	0,14
СОМО	4,7	2,71*	0	0	0	0
Плотность	0,3	0,20	19,4	12,66***	0,2	0,12
Белок	0,5	0,33	19,4	12,71***	0,2	0,14
Лактоза	0,5	0,33	19,2	12,46***	0,2	0,11
Точка замерзания	1,4	0,88	13,2	8,05***	0,1	0,07

* *p*<0,05; *** *p*<0,001.

симость между показателями качества молока до и после заморозки носит выраженный характер (коэффициент корреляции в основном более 0,7).

Фактор «поколение» не оказал достоверного влияния на показатели качества молока, за исключением СОМО. Фактор «заморозка» оказал существенное влияние на показатели качества молока.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зазнобина Т.В. Влияние замораживания на состав и свойства молока коров разных пород // Кормопроизводство, продуктивность, долголетие и благополучие животных: материалы Междунар. науч.-практ. конф., Новосибирск, 25 октября 23 ноября 2018. Новосибирск, 2018. С. 25–27.
- 2. Павлова А.И. Динамика изменения биохимического состава замороженного летнего и зимнего кобыльего молока при его хранении // Вестник КрасГАУ. 2014. N° 7. С. 185–187.
- 3. Подорожняя И.В., Ветохин С.С. Оценка влияния заморозки питьевого молока на некоторые физико-химические показатели // Техника и технология пищевых производств: материалы XII Междунар. науч.-техн. конф., Могилев, 19–20 апреля 2018: в 2 т. Могилев, 2018. Т. 1. С. 371–372.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования России, номер государственного учета НИОКТР: АААА-А19-119012290066-7.

Ефимова Любовь Валентиновна, канд. с.-х. наук, доцент, ведущий научный сотрудник отдела разведения сельскохозяйственных животных, Красноярский научно-исследовательский институт животноводства — обособленное подразделение ФИЦ КНЦ СО РАН. Россия.

Зазнобина Татьяна Вячеславовна, научный сотрудник отдела разведения сельскохозяйственных животных, Красноярский научно-исследовательский институт животноводства — обособленное подразделение ФИЦ КНЦ СО РАН. Россия.

Гатилова Елена Владимировна, канд. биол. наук, старший научный сотрудник отдела разведения сельскохозяйственных животных, Красноярский научно-исследовательский институт животноводства — обособленное подразделение ФИЦ КНЦ СО РАН. Россия.

Иванова Ольга Валерьевна, д-р с.-х. наук, проф. РАН, директор, Красноярский научно-исследовательский институт животноводства – обособленное подразделение ФИЦ КНЦ СО РАН. Россия.

660049, г. Красноярск, просп. Мира, 66. Тел.: (391) 227-15-89.

Ключевые слова: корова-мать; корова-дочь; красно-пестрая порода; молоко; физико-химические свойства; корреляция; дисперсионный анализ.

EFFECT OF FREEZING ON THE MILK QUALITY OF COWS

Efimova Lyubov Valentinovna, Candidate of Agricultural Sciences, Associate Professor, Leading Researcher, Krasnoyarsk Research Institute of Animal Husbandry – the Separate division FRC KSC SB RAS, Russia.

Zaznobina Tatyana Vyacheslavovna, Researcher, Krasnoyarsk Research Institute of Animal Husbandry – the Separate division of FRC KSC SB RAS, Russia.

Gatilova Elena Vladimirovna, Candidate of Biological Sciences, Senior Researcher, Krasnoyarsk Research Institute of Animal Husbandry – the Separate division FRC KSC SB RAS, Russia.

Ivanova Olga Valeryevna, Doctor of Agricultural Sciences, Professor of the Russian Academy of Sciences, Krasnoyarsk Research Institute of Animal Husbandry – the Separate division FRC KSC SB RAS, Russia.

Keywords: cow-mother; cow-daughter; Red-Motley breed;

milk; physical and chemical properties; correlation; analysis of variance.

Due to the fact that milk has a short shelf life, the issue of its freezing and long-term storage in the frozen state is relevant. A study was conducted on the effect of freezing on the milk quality after its defrosting of cows-mothers and cows-daughters of Red-Motley breed. As a result, it was established how milk quality indicators to change after five months of storage in a frozen state in cows of two age groups. A high correlation was established between quality indicators before and after freezing. The influence of the "freezing" factor on milk quality indicators was recognized statistically significant, the "generation" factor – not significant.

