Изображение документа

Агrarian научный журнал. 2021. № 10. С. 103–107

Научная статья
УДК 631.347

АГРОИНЖЕНИЕРИЯ

Экспериментально-теоретические исследования системы
«норма полива – почва – дождевальная машина»

Лариса Анатольевна Журавлева¹, Ван Тхуан Нгуен²
¹ФГБОУ ВО Российский государственный аграрный университет – МСХА имени К.А. Тимирязева, г. Москва, Россия
nguyenthuan230593@gmail.com

Аннотация. Обеспечение производительной и надежной работы дождевыхальных машин при соблюдении эрозионно-безопасных технологий полива с учетом многократных проходов по увлажненным и переувлажненным почвам представляет собой сложную техническую проблему и требует решения комплекса научных и практических задач, базирующихся на исследованиях взаимосвязи системы «норма полива – почва – дождевальная машина». В статье рассмотрена модель взаимодействия колеса с почвой. Представлена зависимость глубины и ширины колеи от номера опорной тележки и от несущей способности. Проведенные исследования позволили определить ориентировочные зоны применения колесных систем в зависимости от несущей способности почвы.

Ключевые слова: норма полива, почва, дождевальная машина, глубина колеи, ширина колеи.

AGRICULTURAL ENGINEERING

Original article

Experimental and theoretical studies of the system
“irrigation rate – soil – sprinkling machine”

Larisa A. Zhuravleva¹, Van Th. Nguyen²
¹Russian State Agrarian University – MSHA named after K.A. Timiryazev, Moscow, Russia, nguyenthuan230593@gmail.com

Abstract. To provide an efficient and reliable operation of sprinkler machines while observing erosion-safe irrigation technologies, you should take into account multiple passes on moist and waterlogged soil. It is a complicated technical problem requiring the solution of a set of scientific and practical problems based on studies of the relationship of the "irrigation rate - soil - sprinkler machine system. The article considers the wheel and soil interaction model. The dependence of the depth and track width on the number of the support bogie and on the bearing, capacity is also shown. The research allowed us to determine the approximate zones of application of wheel systems depending on the bearing capacity of the soil.

Keywords: irrigation rate, soil, sprinkler machine, track depth, track width

Введение. Важнейшими факторами конкурентоспособности современной широкозахватной дождевальной техники являются такие показатели как производительность и надежность работы, энергоемкость и экологическая безопасность процесса полива [4–15]. Работа, направленная на улучшение данных показателей, тесно связана с изучением системы «норма полива – почва – дождевальная машина».

Выращиваемая сельскохозяйственная культура определяет необходимую норму полива и режим ее внесения. По сути, определяет тот минимум воды, который необходим для роста и развития растения и меньше которого полив не целесообразен.

Второй элемент взаимосвязанной системы – почва, обладающая определенными характеристиками и определяющая достоверную норму. Величина достоверной нормы также является ограничением, только уже максимального значения поданной воды. Норма полива позволяет задать требуемый расход воды, необходимый диаметр трубопровода и соответственно вес всего водопроводящего пояса.

Почва в своем увлажненном состоянии определяет несущую способность, которая является определяющим критерием. Зная массу водопроводящего трубопровода и несущую способность почвы следует выбрать верное соотношение длины, пролета и оптимальной ходовой системы.

Цель исследования – выявление закономерности колеобразования дождевыхальных машин по увлажненной почве на основе экспериментально-теоретических исследований системы «норма полива – почва – дождевальная машина».

Теоретические исследования. Процесс взаимодействия колеса с почвой достаточно сложен, и зависит от многих параметров и факторов, которые можно разделить на две основные группы: регулируемые параметры и характеристики, зависящие от конструктивного исполнения машины, ее узлов; нерегулируемые параметры, характеризующие природно-климатические условия использования и эксплуатации дождевыхальных машин (ДМ).

Основными параметрами, характеризующими возможность перемещения машины, являются: удельное давление на почву, глубина и ширина колеи и сопротивление перекатыванию.

Зависимой характеристикой, влияющей на физико-механические характеристики почвы, является достаточно норма полива, определяемая следующей формулой, м³/га [1, 2]:

\[m_{\text{дост}} = 2850(1,14 - d^2) \cdot j_{\text{ср}} / j_1 K, \tag{1} \]

где \(d \) – средний диаметр капель, мм; \(j_{\text{ср}} \) – интенсивность дождя, мм/мин; \(j_1 \) – заданная интенсивность дождя.
мм/мин; К — коэффициент, учитывающий водопропоницаемость почв (K = 0,6 – 1,5).

Несущую способность почвы после полива можно выразить следующим образом, кПа [1, 2]:

\[P_{мп} = P_{нм} + (1,4n_к_{нм} m_д + 8 \cdot 1,01 m_д) \]

(2)

где \(P_{нм} \) — несущая способность почвы до полива, кПа; \(m_д \) — величина стока, м³/га.

Глубина колеи для двухколесной тележки определяется следующим формулой, м [3]:

\[H = 0,6M/(\eta_т 10^2 P_{ном} b_д / \sqrt{D_д}) \]

(3)

где \(M \) — общая масса машины; \(\eta_т \) — количество тележек; \(b_д \) — ширина обода; \(D_д \) — наружный диаметр колес, м.

Ширина колеи, м [3]:

\[B_к = \sqrt{(R_{ин} + b_д / 2)^2 + H(D_д – H) – (R_{ин} – b_д / 2)} \]

(4)

где \(R_{ин} \) — расстояние от основной опоры, м.

Глубина колеи для трехколесной тележки ДМ [3]:

\[H = 0,4M/(\eta_т 10^2 P_{ном} b_д / \sqrt{D_д}) \]

(5)

Необходимо учитывать, что масса тележки с тремя колесами за счет большей длины и усиленной рамы составляет порядка \(m_д = (1,1 – 1,25)m_д \).

На рис. 1 представлена модель взаимодействия колеса с почвой.

Рис. 1. Модель взаимодействия колеса с почвой

Теоретическая зависимость глубины и ширины колеи от несущей способности почвы и расстояния от основной опоры представлена на рис. 2 – 4.

Результаты исследований. Результаты теоретических исследований по подбору пневматических колес для ДМ типа «Фрегат» и «Кубань-ЛК1», «Кубань-ЛК1М» (КАСКАД), ЭДМ «КАСКАД» были подтверждены экспериментально.

Зависимость глубины колеи от номера опорной тележки при несущей способности почвы 110–125 кПа в начале (1) и конце (2) поливного сезона, ДМ «Кубань-ЛК1М» (59,5 м про- лет, шины 16–20) показана на рис. 6.

Аналогичная зависимость глубины колеи от номера опорной тележки при несущей способности почвы 75–95 кПа в начале (1) и конце (2) поливного сезона прослеживалась и для ДМ «Фрегат» ДМУ-Б-463-90 (жесткие колеса), рис. 7.
Рис. 3. Зависимость ширины колеи от порядкового номера опорной тележки (расстояние от основной опоры) для ДМ «КАСКАД» (нагрузка от основной опоры 100 кПа): 1 – шины 23-26; 2 – шины 18-24; 3 – шины 16-20; 4 – шины 14,9-24

Рис. 4. Зависимость глубины колеи от несущей способности почвы для ДМ «КАСКАД» проиллюстрировано нагрузкой 159 кПа для первой опоры: 1 – шины 14,9-34; 2 – шины 16-20; 3 – шины 18-24; 4 – шины 23-26

Рис. 5. Дождевальная машина «КАСКАД»

Рис. 6. Зависимость глубины колеи от номера опорной тележки при несущей способности почвы 110–125 кПа в начале (1) и конце (2) поливного сезона, ДМ «Кубань-ЛКИМ» (59,5 м проиллюстрировано шины 16-20): 1a – теоретически; 2 – экспериментально - \(H = -0,275n_{ct} + 3,9; R^2 = 0,953; \)
\(2 - H = 0,03n_{ct}^2 - 0,206n_{ct}^2 - 0,357n_{ct} + 8,871; R^2 = 0,935. \)
Зависимости колен от несущей способности почвы и достоверной поливной нормы в начале, середине и конце трубопровода для ДМ «Кубань» (КАСКАД) и ДМ «Фрегат» представлены на рис. 8, 9.

На основании исследований взаимосвязи системы «норма полива – почва – дождевальная машина» были выявлены закономерности колеобразования после прохода широкозахватных дождевыхальных машин кругового действия. Проведенные исследования позволяют сделать вывод о возможности увеличения пролета до 65 м, при которых величина колен не превышает нормативных значений при несущей способности более 100 кПа и поливной норме порядка 300–350 м³/га.

Для почв с низкой несущей способностью и машин с длиной пролетов более 59 м рационально применение колес с шинами не менее 16–20, а при уменьшении несущей способности – шины 18–24.
Заключение. На основе проведенных экспериментов можно дать следующие рекомендации по подбору ходовых систем в зависимости от нормы полива:

- норма полива до 300 м³/га, несущая способность P₀ ≥ 80–100 кПа: рекомендуется применить пневмоколеса с узкими шинами. При этом глубина колеи не более 8–10 см;
- норма полива до 300 до 500 м³/га, несущая способность P₀ ≥ 60–80 кПа: рекомендуется применить пневмоколеса с обычными шинами. При этом глубина колеи в диапазоне 5–10 см;
- норма полива более 500 м³/га, несущая способность P₀ < 60 кПа: рекомендуется применить пневмоколеса с широкими шинами. При этом глубина колеи составляет 10–15 см.

СПИСОК ЛИТЕРАТУРЫ

1. Журавлева Л.А. Ресурсооберегающие широкозахватные дождевые машины кругового действия: дис. ... д-ра техн. наук. Саратов, 2018. 409 с.
2. Журавлева Л.А., Тхуан Н. В. Уменьшение колеобразования широкозахватных дождевых машин // Известия МГТУ «МАМИ». 2020, №4(46), C. 38-45.

REFERENCES