05 2023

АГРОНОМИЯ

Аграрный научный журнал. 2023. № 5. С. 4–9. The Agrarian Scientific Journal. 2023;(5):4–9.

АГРОНОМИЯ

Научная статья УДК 635.649

doi: 10.28983/asj.y2023i5pp4-9

Результаты применения ростостимулирующих препаратов нового поколения при возделывании ряда сортов капусты белокочанной

Анастасия Николаевна Бондаренко, Евгений Николаевич Петров

ФГБНУ «Прикаспийский аграрный федеральный научный центр Российской академии наук», Астраханская облась, Черноярский р-н, с. Соленое Займище, e-mail.pniiaz@mail.ru

Анномация. Полевые исследования по возделыванию сортов и гибридов капусты белокочанной с использованием различных стимуляторов роста на фоне $N_{120}P_{60}K_{60}$ были проведены на орошаемом участке, расположенном на расстоянии 1,5 км северо-западнее с. Соленое Займище (Астраханская область), землепользования ФГБНУ «Прикаспийский аграрный федеральный научный центр РАН». Было установлено положительное действие листовых обработок в течение всего периода вегетации. Наилучший эффект был достигнут при совместном использовании Новосил + $N_{120}P_{60}K_{60}$ у гибрида Агрессор F1. При этом урожайность составила 57,5 т/га с прибавкой к контрольному варианту +15,7 т/га.

Ключевые слова: сорт; гибрид; капуста белокочанная; урожайность.

Для цитирования: Бондаренко А. Н., Петров Е. Н. Результаты применения ростостимулирующих препаратов нового поколения при возделывании ряда сортов капусты белокочанной // Аграрный научный журнал. 2023. № 5. С. 4–9. http: 10.28983/asj.y2023i5pp4-9.

AGRONOMY

Original article

The results of the application of growth-stimulating preparations of a new generation in the cultivation of a number of green cabbage varieties

Anastasia N. Bondarenko, Evgeny N. Petrov

Federal State Budgetary Scientific Institution «Pre-Caspian Agrarian Federal Scientific Center of Russian Academy of Sciences», Astrakhan region, Chernoyarsky district, with. Solenoe Zaimishche, e-mail.pniiaz@mail.ru

Abstract. Field studies on the cultivation of green cabbage varieties and hybrids using various growth stimulants against the background $N_{120}P_{60}K_{60}$ were carried out on an irrigated area located at a distance of 1.5 km northwest of the village Solenoe Zaimishche (Astrakhan region) on an irrigated land use area of FSBNU "Pre-Caspian Agrarian Federal Scientific Center of the Russian Academy of Sciences." As a result of the obtained study, the positive effect of leaf treatments during the entire vegetation period was established. Especially the best effect was after joint application of Novosil + $N_{120}P_{60}K_{60}$ in the hybrid Aggressor F1. At the same time, the yield was 57.5 tons/ha with an increase to the control variant of 15.7 tons/ha.

Keywords: variety; hybrid; white cabbage; yield.

For citation: Bondarenko A. N., Petrov E. N. The results of the application of growth-stimulating preparations of a new generation in the cultivation of a number of green cabbage varieties. Agrarnyy nauchnyy zhurnal = The Agrarian Scientific Journal. 2023;(5):4–9. (In Russ.). http: 10.28983/asj.y2023i5pp4-9.

Введение. Белокочанная капуста по содержанию питательных веществ и витаминов является важнейшей овощной культурой [9–14]. Одной из основных причин увеличения ее урожайности на территории РФ является совместное применение минеральных удобрений и стимуляторов роста. Позднеспелые сорта и гибриды капусты белокочанной хорошо отзывчивы к минеральному питанию, но для получения качественного высокого урожая необходимо применять стимуляторы роста.

А.Б. Малхасян, И.Н. Павлова в 2016–2017 гг. доказали, что урожайность капусты белокочанной сортов Белоснежка, Зимовка и гибрида Колобок F1 увеличивалась на 3,4–5,0 т/га при обработке препаратом Гумэл Люкс [4].

Таблица 1

Исследования, проводимые С.Б. Ерлыковым и др. на аллювиальных луговых почвах нечерноземной зоны ООО» Агрооптима», показали, что для формирования урожайности среднеспелой капусты белокочанной на уровне 82,9 т/га на фоне $N_{180}P_{80}K_{240}$ эффективна двукратная листовая подкормка Агровин Универсал 0,7 кг/га, что выше на 34,3 т/га по сравнению с контролем [2].

Агроклиматические условия Нижневолжского региона и северной части Волго-Ахтубинской поймы вполне благоприятны для возделывания различной овощной продукции, однако средняя урожайность ее на территории Астраханской области остается достаточно низкой.

Цель настоящего исследования — усовершенствование приемов возделывания различных сортов капусты белокочанной позднего срока созревания с применением ростостимулирующих препаратов на фоне минеральных удобрений при капельном орошении на светло-каштановых почвах Северного Прикаспия.

Методика исследований. В ходе исследований (2019–2021 гг.) выявляли наиболее перспективные для условий Астраханской области сорта и гибриды капусты белокочанной; определяли биохимический состав кочанов в зависимости от вариантов опыта. Впервые в условиях светлокаштановой почвы Астраханской области изучали влияние некорневых обработок современными ростостимулирующими препаратами на урожайность и качество капусты белокочанной при капельном способе полива.

Почва орошаемого участка характеризуется как светло-каштановая, разной степени солонцеватости, занимающая доминирующее положение в почвенном покрове рассматриваемой территории. Был проведен агрохимический анализ почв опытного участка (табл. 1).

Результаты агрохимического анализа почв по горизонту 0-20 см

Показатель	Фактическое значение	НД на испытания
рН водной вытяжки, Ед.	8,29	ГОСТ 26423-85
Массовая доля подвижных соединений фосфора, мг/кг	24,75	ГОСТ26205-91
Массовая доля подвижных соединений калия, мг/кг	442	ГОСТ 26205-91
Массовая доля органического вещества, %	0,92	ГОСТ 26213-91
Массовая доля азота аммония, мг/кг	3,85	ГОСТ 26486-85
Массовая доля азота нитратов, мг/кг	4,40	ГОСТ 26951-86

Методом расщепленных делянок был заложен двухфакторный полевой опыт по культуре капуста белокочанная. Повторность опыта – трехкратная. Размещение делянок – систематическое. Фактором А являлись среднепоздние гибриды Сати F1, Агрессор F1, Гаага F1 и сорт капусты белокочанной Зимовка 1474. Фактором В являлись антистрессовый агрохимикат Аминофол Плюс, синтетическим препарат Новосил и комплексное минеральное удобрение для листовой подкормки Здравень турбо (универсальный для овощных).

Опыт был заложен на орошаемом участке и предусматривал следующие варианты: 1) контроль (обработка водой); 2) Аминофол Плюс (обработка по листу в течение вегетации); 3) Новосил (обработка по листу в течение вегетации); 4) Здравень турбо (обработка по листу в течение вегетации). Нормы расходов и сроки обработок осуществляли согласно установленным рекомендациям товаропроизводителя.

В ходе исследований проводили полевые учеты, наблюдения и измерения с использованием общепринятых методик [1, 3, 5–7]. Общая площадь капусты белокочанной — $480,0\,\mathrm{m}^2$. Площадь учетной делянки — $10,0\,\mathrm{m}^2$. Норма высадки рассады — $56,0\,\mathrm{тыс}$. шт./га. Схема посадки — $1,4\,\times\,0,25\,\mathrm{m}$ (согласно ранее разработанным зональным рекомендациям). Способ высадки — вручную (рассада). В период вегетации в соответствии с почвенно-климатическими условиями

Астраханской области и с учетом выноса питательных веществ вносили минеральные удобрения $N_{120}P_{60}K_{60}$ [8].

Уход за культурой заключался в поддержании гибридов и сорта капусты белокочанной в чистом от сорняков состоянии и регулировании водного режима почвы. Орошение опытного участка осуществляли капельным способом. Оросительную воду подавали из естественного источника — затона р. Волги. Показатель рН поливной воды — 7,5, жесткость — 3,1. Комплекс защитных мероприятий на посадках капусты белокочанной включал в себя обработки в период вегетации от вредителей (препараты Кораген, КС, Брейк, Энлиль) и от болезней (Метаксил, СП, Раек, КЭ).

Обработки проводили штанговым опрыскивателем ОН-600 + МТЗ 1021.

Результаты исследований. Урожайность капусты белокочанной. По результатам проведенных исследований, в течение трех лет в зависимости от вариантов обработки при капельном способе полива, был выделен высокопродуктивный гибрид Агрессор F1 на варианте с обработкой по листу препаратом Новосил. Так, биологическая урожайность на данном варианте составила 57,5 т/га с прибавкой к контрольному варианту +15,7 т/га, при средней массе кочана 2,5 кг. Товарность продукции при таких показателях была равна 100% (табл. 2). Для определения влияния вариантов листовой обработки на урожайность капусты белокочанной гибрида Агрессор F1 была проведена статистическая обработка полученных данных в среднем за 2019–2021 гг.: y = 1,58x + 49,95, $R^2 = 0,0862$.

Полученные математические зависимости между урожайностью капусты белокочанной и вариантами обработок, которые описали корреляционную взаимосвязь этих факторов, позволили рассчитать будущую прибавку урожая в зависимости от вариантов листовой обработки при фоновом внесении минеральных удобрений.

Результаты биохимического анализа капусты белокочанной в зависимости от вариантов листовой обработки. За годы проводимых исследований (2019–2021) установлены максимальные показатели по содержанию сухого вещества 9,1–9,3 % у гибридов Гаага F1 и Агрессор F1 на вариантах с применением препаратов Новосил и Аминофол Плюс (рис. 1).

По сумме сахаров выделились гибриды Сати F1 и Гаага F1 (4,8 %) на варианте с применением препарата Новосил (рис. 2).

По итогам трех лет изучения был выделен препарат Новосил, который способствовал существенному снижению нитратов в кочанах. Особенно отличались гибриды Сати F1 и Агрессор F1, где их содержание составило 113,5–115,5 мг/кг (рис. 3).

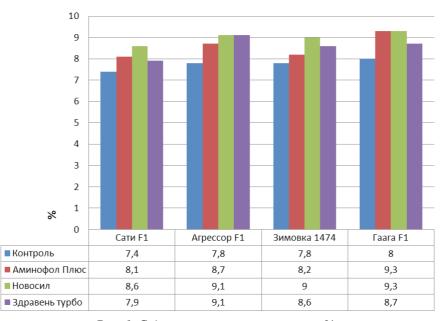


Рис. 1. Содержание сухого вещества, %

Урожайность капусты белокочанной в зависимости от вариантов листовой обработки за 2019-2021 гг.

				Von to toutonou o actuallation of the control of th			J.					
Гибрид/ сорт	Вариант	кол-во	кол-во кочанов с делянки, шт.	лянки, шт. нетовар- ных	ВСЕГО	Оощии соор с делянки, кт товарной нетовар	іянки, кг нетоварной продукции	Средняя масса кочана, кг	Биологиче- ская урожай- ность, т/га	± к контро- лю, т/га	Товарная урожай- ность, т/га	Товар- ность, %
	Контроль	21	16	5	39,9	30,4	9,5	1,9	39,9	ı	30,4	76,2
IH E	Аминофол Плюс	23	17	9	48,3	35,7	12,6	2,1	48,3	8,4	35,7	73,9
Сати	Новосил	23	19	4	43,7	36,1	7,6	1,9	43,7	3,8	36,1	82,6
	Здравень турбо	23	17	9	52,9	39,1	13,8	2,3	52,9	13,0	39,1	73,9
Į.	Контроль	22	21	1	41,8	39,9	1,9	1,9	41,8	I	39,9	95,5
doc	Аминофол Плюс	23	23	1	48,3	48,3	1	2,1	48,3	6,5	48,3	100
rbec	Новосил	23	23	ı	55,2	55,2	I	2,5	57,5	15,7	57,5	100
V	Здравень турбо	22	21	1	44,0	42,0	2,0	2,0	44,0	2,2	42,0	95,5
	Контроль	22	19	3	30,8	26,6	4,2	1,4	30,8	I	26,6	86,4
14 g	Аминофол Плюс	21	19	2	46,2	41,8	4,4	2,2	46,2	15,4	41,8	5'06
Гааг	Новосил	23	21	2	50,6	46,2	4,4	2,2	50,6	19,8	46,2	91,3
	Здравень турбо	21	18	3	48,3	41,4	6'9	2,3	48,3	17,5	41,4	85,7
	Контроль	22	21	1	33,0	31,5	1,5	1,5	33,0	I	31,5	95,5
<i>7/2</i>	Аминофол Плюс	22	22	I	9,05	9,05	I	2,3	50,6	17,6	50,6	100
ми£ µІ	Новосил	23	23	Ι	55,2	55,2	I	2,4	55,2	22,2	55,2	100
	Здравень турбо	22	21	1	968	37,8	1,8	1,8	39,6	9,9	37,8	5'56
	HCP ₀₅ (A)								1,2			
	$HCP_{05}(B)$								1,2			
	HCP ₀₅ (AB)								1,1			

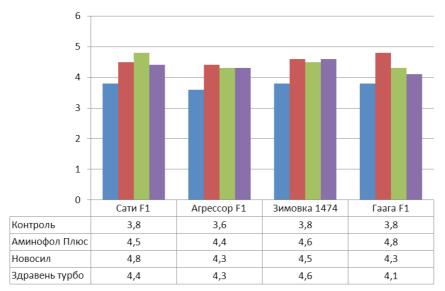


Рис. 2. Сумма сахаров, %

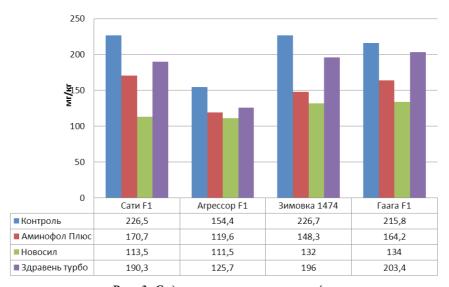


Рис. 3. Содержание нитратов, мг/кг

Заключение. Результаты возделывания капусты белокочанной на фоне листовых обработок различными ростостимулирующими препаратами и удобрениями показали высокую урожайность на вариантах с природным регулятором роста Новосил.

В течение трех лет в зависимости от вариантов обработки при капельном способе полива был выделен высокопродуктивный гибрид Агрессор F1 на варианте с обработкой по листу препаратом Новосил. Так, биологическая урожайность на данном варианте составила $57,5\,$ т/га с прибавкой к контрольному варианту $+15,7\,$ т/га, при средней массе кочана $2,5\,$ кг. Товарность продукции при таких показателях была равна $100\,$ %.

Использование препарата Новосил на фоне применения минеральных удобрений ($N_{120}P_{60}K_{60}$) не привело к существенному накоплению нитратов в кочанах. Все показатели биохимического анализа высокоурожайного гибрида Агрессор F1 были в пределах ПДК.

Таким образом, гибрид Агрессор F1 при совместном использовании листовой обработки Новосил $+ N_{120} P_{60} K_{60}$ рекомендуется для возделывания в почвенно-климатических условиях Астраханской области, а также для регионов со схожими агроклиматическими условиями.

СПИСОК ЛИТЕРАТУРЫ

- 1. Белик В. Ф. Методика в овощеводстве и бахчеводстве. М.: Колос, 1982. С. 32–35.
- 2. Ерлыков С. Б., Нехорошев А. Н., Иванова М. И., Енгалычев Д. И. Российские аминохелатные удобрения серии агровин на капусте белокочанной // Вестник Марийского государственного университета. Серия «Сельскохозяйственные науки. Экономические науки». 2017. № 2(10). С. 22–29.

2023

- 3. Литвинов С. С. Методика полевого опыта в овощеводстве. М.: ВНИИ овощеводства, 2011. 648 с.
- 4. Малхасян А. Б., Павлова И. Н. Влияние природных регуляторов роста на урожайность и качество белокочанной капусты // Известия Оренбургского государственного университета. 2018. № 5(73). С. 116–117.
- 5. Методика Государственного сортоиспытания сельскохозяйственных культур. Вып. 4. Картофель, овощные и бахчевые культуры / Министерство сельского хозяйства РФ. М., 2015. 61 с.
- 6. Методическое руководство по проведению регистрационных испытаний агрохимикатов в сельском хозяйстве: произв.-практ. изд. / Минсельхоз России. М., 2018. 132 с.
 - 7. Никитенко Г. Ф. Опытное дело в полеводстве. М.: Сельхозиздат, 1982. 190 с.
 - 8. Челобанов Н. В. Земледелие в Астраханской области. Астрахань: Изд-во «Факел», 1998. 432 с.
- 9. Chase E., Susan A. Cabbage Stump // Journal of Education. 2019. No. 42. P. 158–159. DOI: 10.1177/002205749504200909.
- 10. Routoula E. The sweet smell of sweat and cabbage // Nature Reviews Chemistry. 2019. P. 35–40. DOI: 10.1038/s41570-019-0112-4.
- 11. Deep learning for white cabbage seedling prediction / Yu. Perugachi-Diaz et al. // Computers and Electronics in Agriculture. 2021. No. 184. 106059. DOI: 10.1016/j.compag.2021.106059.
- 12. Kural Leyla & Yergin Özkan, Reyyan. Allelopathic potential of white cabbage on some plants // Plant, Soil and Environment. 2020. No. 66. P. 559–563. DOI: 10.17221/386/2020-PSE.
- 13. Drago Bioactive polyphenolic compounds from white cabbage cultivars / L. Jakobek et al. // Croatian Journal of Food Science and Technology. 2018. No. 10. P. 164–172. DOI: 10.17508/CJFST.2018.10.2.03.
- 14. Impact of irrigation on plant growth and development of white cabbage / S. Seidel et al. // Agricultural Water Management. 2017. No. 187. P. 99–111. DOI: 10.1016/j.agwat.2017.03.011.

REFERENCES

- 1. Belik V. F. Methodology in vegetable growing and melon growing. Moscow: Kolos; 1982. P. 32–35. (In Russ.).
- 2. Erlyko S. B., Nekhoroshev A. N., Ivanova M. I., Engalychev D. I. Russian aminochelet fertilizers of a series of agrovine on white cabbage. *Bulletin of Mari State University. Series. "Agricultural Sciences. Economic sciences."* 2017;2(10): 22–29. (In Russ.).
- 3. Litvinov S. S. Field experience methodology in vegetable growing. Moscow: All-Russian Research Institute of Vegetable Growing; 2011. 648 p. (In Russ.).
- 4. Malkhasyan A. B., Pavlova I. N. Influence of natural growth regulators on the yield and quality of white cabbage. *Izvestia of Orenburg State University*. 2018;5(73):116–117. (In Russ.).
- 5. Procedure of State Crop Variety Testing. No. 4. Potatoes, vegetables and melons / Ministry of Agriculture of the Russian Federation. Moscow; 2015. 61 p. (In Russ.).
- 6. Methodological Guidelines for Registration Tests of Agrochemicals in Agriculture: Production-Practice. ed. / Ministry of Agriculture of Russia. Moscow; 2018. 132 p. (In Russ.).
 - 7. Nikitenko G. F. Experience in field husbandry. Moscow: Selkhozizdat; 1982. 190 p. (In Russ.).
- 8. Chelobanov N. V. Agriculture in the Astrakhan region. Astrakhan: Fakel Publishing House; 1998. 432 p. (In Russ.).
- 9. Chase E., Susan A. Cabbage Stump. *Journal of Education*. 2019;(42):158–159. DOI: 10.1177/002205749504200909.
- 10. Routoula E. The sweet smell of sweat and cabbage. Nature Reviews Chemistry. 2019. P. 35–40. DOI: 10.1038/s41570-019-0112-4.
- 11. Deep learning for white cabbage seedling prediction / Yu. Perugachi-Diaz et al. *Computers and Electronics in Agriculture*. 2021;(184):106059. DOI: 10.1016/j.compag.2021.106059.
- 12. Kural Leyla & Yergin Özkan, Reyyan. Allelopathic potential of white cabbage on some plants . *Plant, Soil and Environment*. 2020;(66):559–563. DOI: 10.17221/386/2020-PSE.
- 13. Drago Bioactive polyphenolic compounds from white cabbage cultivars / L. Jakobek et al. *Croatian Journal of Food Science and Technology*. 2018;(10):164–172. DOI: 10.17508/CJFST.2018.10.2.03.
- 14. Impact of irrigation on plant growth and development of white cabbage / S. Seidel et al. *Agricultural Water Management*. 2017;(187):99–111. DOI: 10.1016/j.agwat.2017.03.011.

Статья поступила в редакцию 07.09.2022; одобрена после рецензирования 11.09.2022; принята к публикации 26.09.2022.

The article was submitted 07.09.2022; approved after 11.09.2022; accepted for publication 26.09.2022.

2023