11 2018

DROHOMNYECKNE HAYKN

УДК 004.42:637.521.423

ЭКОНОМИКО-АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ РЕЦЕПТУРЫ ИННОВАЦИОННОГО ПРОДУКТА «ПОВОЛЖСКИЙ» ИЗ СУБПРОДУКТОВ ІІ КАТЕГОРИИ СО СБАЛАНСИРОВАННЫМ СОСТАВОМ БЕЛКОВЫХ КОМПОНЕНТОВ НА ОСНОВЕ СОВРЕМЕННЫХ МЕТОДОВ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

БЕРДНОВА Екатерина Владимировна, Саратовский государственный аграрный университет имени Н.И. Вавилова

ГИРО Татьяна Михайловна, Саратовский государственный аграрный университет имени Н.И. Вавилова

КОРСУНОВ Владимир Петрович, Саратовский государственный аграрный университет имени Н.И. Вавилова

ЗУБОВ Сергей Сергеевич, Саратовский государственный аграрный университет имени Н.И. Вавилова

КОРСУНОВА Евгения Никитична, Саратовский государственный медицинский университет имени В.И. Разумовского

С учетом ресурсов и диетических свойств малоценных субпродуктов II категории авторами методом математического моделирования спроектирована нутриентно-сбалансированная рецептура продуктов с лимитированным содержанием эссенциальных микроэлементов для профилактики дисмикроэлементоза в рамках инновационного продукта «Поволжский». Комплексная переработка низкосортных субпродуктов повысит рентабельность производства, будет способствовать внедрению безотходных технологий и экологическому равновесию окружающей среды.

Введение. Наличие значительной доли коллагена в субпродуктах II категории выполняет важную физиологическую роль в организме человека. В соответствии с теорией адекватного питания функция пищевых волокон регулирует метаболические процессы в организме [9]. Минеральные вещества и пищевые волокна являются эссенциальными факторами питания и дефицит их в пище сопровождается нарушением физиологического и умственного развития, снижением внимания и памяти [4]. Ключевым моментом в решении данной проблемы является ликвидация дефицита витаминов и минеральных веществ в рационе человека, который обусловливает снижение иммунитета, нарушение метаболических процессов и эндокринной системы [2].

Наиболее целесообразным, простым, экономически и технологически реальным способом обеспечить население полноценными продуктами питания является путь полной комплексной переработки субпродуктов ІІ категории. Кроме того, в настоящее время актуальной проблемой является импортозамещение продуктов питания в связи с принятием Россией ответных санкций.

Решение данной проблемы может быть достигнуто путем разработки новых, нутриентно-сбалансированных рецептур продуктов с лимитированным использованием микро- и макроэлементов из низкосортных субпродуктов, рассчитанных методом математического моделирования.

С учетом ресурсов и диетических свойств авторами предложен метод математического моделирования для расчета рецептуры мясных изделий из малоценных продуктов убоя свиней и мелкого рогатого скота (рубец и сычуг бараньи, легкое, мясо свиных и бараньих голов, мясная обрезь, рульки, голяшки, соединительные ткани, уши свиные и шкура свиная) [12].

Методика исследований. Каждый из указанных субпродуктов по отдельности не может обеспечить человека комплексом микро- и макроэлементов. Химический состав субпродуктов, представленный в табл. 1, показывает, что недостаток или избыток эссенциальных микроэлементов в данном субпродукте можно компенсировать за счет комбинирования его с другими субпродуктами с различными пропорциями микро- и макроэлементов. Опираясь на современные принципы математического моделирования, а также на обоснованный подход к выбору соотношения компонентов в рецептуре спроектируем изделие со сбалансированным составом белкового компонента.

Задачей проектирования рецептуры является подбор количества субпродуктов, который будет вписываться в границы допустимых значений и соответствовать требованиям теории сбалансированного питания. В табл. 1 представлен микроэлементный состав субпродуктов II категории: $Z_{\rm i}$ — суточная норма, в 100 г съедобной части; $Z_{\rm 2}$ — селезенка баранья; $Z_{\rm 3}$ — голова баранья; $Z_{\rm 4}$ — рубец бараний; $Z_{\rm 5}$ — уши свиные; $Z_{\rm 6}$ — легкое баранье; $Z_{\rm 7}$ — баранина 1-й категории; $Z_{\rm 8}$ — шкура свиная. При переходе к системе уравнений все размерности массы переведены в мг, а затем — в безразмерные величины для удобства расчета.

$$\begin{split} \text{K:} \ Z_1 &= 2503 = 358 \ Z_2 + 270 \ Z_3 + 200 \ Z_4 + 71 Z_5 + \\ &\quad + 238 \ Z_6 + 200 \ Z_7 + 325 \ Z_8; \\ \text{Ca:} \ Z_1 &= 1000 = 9 \ Z_2 + 9 \ Z_3 + 10 \ Z_4 + 19 \ Z_5 + \\ &\quad + 11 \ Z_6 + 10 \ Z_7 + 10 \ Z_8 \ ; \\ \text{Fe:} \ Z_1 &= 18 = 41,89 \ Z_2 + 2 \ Z_3 + 3 \ Z_4 + 2,9 \ Z_5 + \\ &\quad + 10,2 \ Z_6 + 3 \ Z_7 + 3 \ Z_8; \\ \text{I:} \ Z_1 &= 0,15 = 0 \ Z_2 + 0,0027 \ Z_3 + 0,007 \ Z_4 + 0 \ Z_5 + \\ &\quad + 0 \ Z_6 + 0,007 \ Z_7 + 0,007 \ Z_8; \\ \text{Se:} \ Z_1 &= 0,055 = 0,0324 \ Z_2 + 0 \ Z_3 + 0 \ Z_4 + \\ &\quad + 0,0044 + Z_5 + 0,0177 \ Z_6 + 0 \ Z_7 + 0 \ Z_8; \\ \text{Zn:} \ Z_1 &= 12 = 2,84 \ Z_2 + 2,82 \ Z_3 + 0 \ Z_4 + 0,2 \ Z_5 + \\ &\quad + 1,8 \ Z_6 + 3 \ Z_7 + 3 \ Z_8. \end{split}$$

В линейной алгебраической системе 6 уравнений и 7 неизвестных: $Z_2 - Z_8$. Такая система имеет много решений и решается с помощью неравенств [5, 6, 7].

$$\begin{array}{c} 2503 \cdot 0,1 \leq 358 \ Z2 + 270 \ Z3 + 200 \ Z4 + 71 \ Z5 + \\ +238 \ Z6 + 200 \ Z7 + 325 \ Z8 \leq 2503 \cdot 2; \\ 1000 \cdot 0,1 \leq 9 \ Z2 + 9 \ Z3 + 10 \ Z4 + 19 \ Z5 + 11 \ Z6 + \\ +10 \ Z7 + 10 \ Z8 \leq 1000 \cdot 2; \\ 18 \cdot 0,1 \leq 41,89 \ Z2 + 2 \ Z3 + 3 \ Z4 + 2,9 \ Z5 + 10,2 + \\ +Z6 + 3 \ Z7 + 3 \ Z8 \leq 18 \cdot 2; \\ 0,15 \cdot 0,1 \leq 0 \ Z2 + 0,0027 \ Z3 + 0,007 \ Z4 + 0 \ Z5 + \\ +0Z6 + 0,007 \ Z7 + 0,007 \ Z8 \leq 0,15 \cdot 2; \\ 0,055 \cdot 0,1 \leq 0,0324 \ Z2 + 0 \ Z3 + 0 \ Z4 + 0,0044 \ Z5 + \\ +0,0177 \ Z6 + 0 \ Z7 + 0 \ Z8 \leq 0,055 \cdot 2; \\ 12 \cdot 0,1 \leq 2,84 \ Z2 + 2,82 \ Z3 + 0 \ Z4 + 0,2 \ Z5 + \\ +1,8 \ Z6 + 3 \ Z7 + 3 \ Z8 \leq 12 \cdot 2. \end{array}$$

Для решения данной системы неравенств воспользуемся сервисом «Поиск решения» приложения MS Excel. Заполним рабочий лист приложения MS Excel следующим образом (рис. 1):

Добавим набор ограничений на массу каждого продукта в пределах от 10 до 200 г. Данные ограничения введены с целью использования всех обозначенных продуктов.

Воспользовавшись сервисом «Поиск решения» приложения MS Excel, заполним поисковую таблицу, представленную на рис. 2, и включив сервис «Найти решение», получим набор искомых неизвестных, удовлетворяющих системе неравенств, описанных выше (табл. 2).

Резульматы исследований. Таким образом, продукт, соответствующий требованиям здорового питания, должен содержать (в 1000 г) Z_2 — баранья селезенка — 0,19 · 100 г = 19 г; Z_3 — голова баранья — 2,27 · 100 г = 227 г; Z_4 — рубец бараний 2,59 · 100 г = 259 г; Z_5 — уши свиные — 0,26 · 100 г = 26 г; Z_6 — легкое баранье — 0,10 · 100 г = 10 г; Z_7 — баранина 1-й категории — 2,59 · 100 г = 259 г; Z_8 — шкура свиная —2,00 · 100 г = 200 г. Общая масса рассчитанного сырья соответствует требованиям:

$$Z_2+Z_3+Z_4+Z_5+Z_6+Z_7+Z_8=19+227+259+26+10+259+200=1000$$
 г=1 кг.

Таким образом, в этом продукте будет содержаться:

K-2409,155 мг; Ca -100 мг; Fe -35,96636 мг; I -0,0563373 мг; Se -0,0091428 мг; Zn -20,94014 мг

Рецептура, спроектированная методом математического моделирования, скорректирована с учетом сенсорных и функционально технологических свойств продукта (структура, вкус, аромат) (табл. 3). Баранина 1-й категории заменена мясом свиных голов, так как химический состав этих видов сырья отличается не значительно. Содержание селезенки в рецептуре ограничили 5 % в связи с ее специфическими сенсорными свойствами.

Содержание белка в продукте составляет 18,1%, жира -12,5%, что свидетельствует о до-

Таблица 1

Микроэлементный состав субпродуктов II категории в 100 гр съедобной части

Показатель	Суточная норма $Z_{\scriptscriptstyle 1}$	Селезенка баранья $Z_{\scriptscriptstyle 2}$	Голова баранья Z ₃	Рубец бараний Z ₄	Уши свиные $Z_{\scriptscriptstyle 5}$	Легкое баранье $Z_{\scriptscriptstyle 6}$	Баранина 1-й катего- рии $Z_{\scriptscriptstyle 7}$	Шкура свиная $Z_{_8}$			
Макроэлементы											
Калий, мг	2503	358	270	200	71	238	200	325			
Кальций, мг	1000	9	9	10	19	11	10	10			
Микроэлементы											
Железо, мг	18	41,89	2	3	2,9	10,2	3	3			
Йод, мг	0,15	0	0,0027	0,007	0	0	0,007	0,007			
Селен, мг	0,055	0,0324	0	0	0,0044	0,0177	0	0			
Цинк, мг	12	2,84	2,82	0	0,2	1,8	3	3			

11 2018

2	4	8	C	D.	E		G	H	1	1	K	L	M	N	
1			111111111111111111111111111111111111111	175	100		1.0011	1000	11111	1	1100			Г	
2		358	270	200	71	238	200	325	2503	-2"12	=12"0,1	Same	=CYMMTPO438(82;H2;\$8\$10;\$H\$10)		
3		9	9	10	19	11	10	10	1000	=2*13	=13 ° 0, I	кальций	=CYMMTPO438(83:H3;\$8\$10:\$H\$10)		
4		41,89	2	3	2,9	10,2	3	3	18	-2"14	-14"0,1	железо	-CVMMПPOИЗВ(84:H4;\$8\$10:\$H\$)		
5		0	0,0027	0,007	0	D	0.007	0,007	0,15	=2*15	=65*0,1	Ros	=CYMWTPOH38(85:H5;\$8\$10:\$H\$10)		
n		0,0324	0	0	0,0044	0,017	0	0	0,053	:2*16	=M*0,1	селен	=CVMM/TPOUZB(B8:H6;\$R\$10:\$H\$10)		
7		2,84	2,82	0	0,2	1,8	3	3	12	-2°17	-17*0,1	цини	-CVMIMTIPOU38(87:H7;\$8\$10:\$H\$10)	Т	
8														l	
9		7.2	23	. 24	25	26	27	Zá					∑zi, 1+2,3,4,3,6,7,6		
10		0.194	2,269	2,587	0,263	0,100	2,586	2.000					-CVMW(B10:H10)		
11			100000	B000000		-		00000						Г	

Puc. 1. Рабочий лист приложения MS Excel

Таблица 3

Параметры поиска решения Оптинизировать целевую функцию: До: Максинум Мининум Значения: Изменяя ячейки переменных: \$8\$10:\$H\$10 В соответствии с ограничениями: \$\$\$10:\$H\$10 <= 2 \$\$\$10:\$H\$10 <= 2 \$\$\$10:\$H\$10 <= 2 \$\$\$10:\$H\$10 >= 0,1 \$\$\$1:\$H\$10 == 0,1 \$\$1:\$H\$10 == 0,1 \$\$\$1:\$H\$10 == 0,1 \$\$\$1:\$H\$10 == 0,1 \$\$\$1:\$H

Рис. 2. Заданные параметры искомых неизвестных

статочно высокой белковой ценности продукта. Продукт субпродуктовый комбинированный «Поволжский» после термообработки отличался сочностью, приятным вкусом и ароматом, стабильной структурой и консистенцией, характерной для гетерогенных фаршевых мясопродуктов [11].

По микробиологическим показателям продукт «Поволжский» соответствует требованиям технического регламента Таможенного союза.

На изделие утверждены технические условия (ТУ 9214-004-00493495-2014). Продукт субпродуктовый комбинированный «Поволжский» отмечен золотой медалью и дипломом на Всероссийском смотре-конкурсе лучших пищевых продуктов, продовольственного сырья и инновационных разработок и Народным знаком качества «Общественное признание» (г. Волгоград, 2014 г.) [10].

Заключение. Спроектированная методом математического моделирования нутриентно-

Рецептура продукта «Поволжский» из субпродукто	ЭB
II категории, прессованного в форме	

Наименование сырья, специй	Количественное содержание компонентов					
Сырье, кг						
Мясо голов	50					
Рубец бараний	10					
Легкое баранье	10					
Шкурка свиная	20					
Селезенка баранья	5					
Уши свиные	5					
Итого	100					
Пряности и вспомогательные						
материалы, г/100 кг сырья						
Соль поваренная пищевая	1600					
Сахар-песок или глюкоза	50					
кристаллитическая гидратная						
Кориандр	100					
Перец черный молотый	100					
Перец белый	50					
Чеснок свежий или консервированный	150					

сбалансированная рецептура продуктов с учетом ресурсов и диетических свойств малоценных субпродуктов II категории и с лимитированным содержанием эссенциальных микроэлементов для профилактики дисмикроэлементоза в рамках инновационного продукта «Поволжский» позволила обеспечить комплексную переработку низкосортных субпродуктов и повысить рентабельность производства [8]. Это способствует внедрению безотходных технологий и экологическому равновесию окружающей среды [3]. Социальное значение профилактики дисмикроэлементоза заключается в повышения иммунитета, нормализации обмена веществ и эндокринной системы, что положительно отражается на умственном и физическом развитии человека [2]. Научное значение данной работы состоит в том, что предложенный метод математического моделирования дополняет метод матричных игр [1] и позволяет комплек-

Таблица 2

Пропорции продуктов, соответствующие здоровому образу жизни

Продукт	Z_2	Z_3	Z_4	Z_{5}	Z_6	Z_7	$Z_{_8}$
Точное значение		2,269	2,587	0,263	0,100	2,586	2,000
Приближенное значение		2,27	2,59	0,26	0,10	2,59	2,00

сно подходить к решению подобных задач.

Использование низкосортных субпродуктов позволило не только повысить рентабельность производства, но и экономически обосновать использование малоценных субпродуктов II категории.

СПИСОК ЛИТЕРАТУРЫ

- 1. Берднова Е.В., Корсунов В.П., Зубов С.С., Гиро Т.М. Математическое моделирование структуры изделий из субпродуктов методами матричных игр // Аграрный научный журнал. 2015. № 12. С. 36–40.
- 2. Гиро Т.М., Зубов С.С., Гиро А.В. Технология мясных изделий из малоценных субпродуктов для специального питания // Питание и интеллект: материалы науч.-техн. конф. СПб, 2015. С. 109–114.
- 3. *Гиро Т.М., Зубов С.С., Зеленева Е.С.* Технология формованных изделий из малоценных субпродуктов овец и свиней для специального питания // Мясной ряд. $2014. N^{\circ} 4. C. 50-53.$
- 4. Гиро Т.М., Зубов С.С., Шустов Е.А. Использование малоценных субпродуктов в производстве изделий для профилактики дисмикроэлементоза // Технология и продукты здорового питания: материалы IX Междунар. конф. Саратов, 2015. С. 88–91.
- 5. Корсунов В.П. Математика: сборник задач: в 4 ч. Ч. 4. Модули 10 (Линейное программирование), 11 (Транспортная задача. Целочисленное программирование), 12 (Нелинейное и динамическое программирование). Саратов: Изд-во Сарат. ун-та, 2014. 64 с.
- 6. *Корсунов В.П.* Выбор оптимальной стратегии в матричной игре без седловой точки методом линейного программирования: материалы XIV Междунар. науч. конф. им. акад. М. Кравчука. Т. 2. Киев, 2012. 276 с. (с. 139–142).
- 7. Ларионов С.В., Корсунов В.П. Применение математики в зоотехнии, ветеринарии и технологии питания животного происхождения: учебно-методическое пособие. Саратов: Изд-во Сарат. ун-та, 2014. 60 с.
- 8. Ларионов С.В., Берднова Е.В. Молчанов А.В., Корсунов В.П. Роль аграрного образования в развитии сельского хозяйства в России / Саратовский государственный технический университет. Саратов, 2017. 76 с.
- 9. Наилучшие доступные технологии убоя животных и птицы. Переработка побочных продуктов /

- И.Л. Воротников [и др.]; ФГБОУ ВО «Саратовский ГАУ». Саратов, 2018. 608 с.
- 10. Оптимизация переработки коллагенсодержащих субпродуктов / Т.М. Гиро [и др.] // Экологические, генетические, биотехнололгические проблемы и их решение при производстве и переработке продукции животноводства: материалы Междунар. науч.практ. конф. Волгоград, 2017. С. 132–136.
- 11. Повышение эффективности переработки коллагенсодержащих субпродуктов / Т.М. Гиро [и др.] // Мясная индустрия. 2017. № 9. С. 14-18.
- 12. Химический состав пищевых продуктов. Справочные таблицы содержания аминокислот, жирных кислот, витаминов, макро- и микроэлементов, органических кислот и углеводов / под ред. М.Ф. Нестерина и И.М. Скурихина. М.: Пищевая промышленность, 2001. 3 с.

Берднова Екатерина Владимировна, канд. пед. наук, доцент кафедры «Экономическая кибернетика», Саратовский государственный аграрный университет имени Н.И. Вавилова. Россия.

Гиро Татьяна Михайловна, д-р техн. наук, проф. кафедры «Технология производства и переработки продукции животноводства», Саратовский государственный аграрный университет имени Н.И. Вавилова. Россия.

Корсунов Владимир Петрович, д-р техн. наук, проф. кафедры «Математика и математическое моделирование», Саратовский государственный аграрный университет имени Н.И. Вавилова. Россия.

Зубов Сергей Сергеевич, аспирант кафедры «Технология производства и переработки продукции животноводства», Саратовский государственный аграрный университет имени Н.И. Вавилова. Россия.

410005, г. Саратов, ул. Большая Садовая, 220.

Тел.: (8452) 69-25-32; e-mail: http://www.sgau.ru; fvm@sgau.ru.

Корсунова Евгения Никитична, канд. мед. наук, ассистент кафедры «Факультетская терапия», Саратовский государственный медицинский университет имени В.И. Разумовского. Россия.

410012, г. Саратов, ул. Большая Казачья, 112. Тел.:(8452) 227-33-70.

Ключевые слова: субпродукты II категории; микроэлементы; витамины; минеральные вещества; расчет рецептуры; математическое моделирование.

ECONOMIC AND ANALYTICAL RESEARCH OF THE RECIPE OF THE IN-NOVATIVE PRODUCT "POVOLZHSKY" FROM SUBPRODUCTS OF 2nd CATEGORY WITH BALANCED COMPOSITION OF PROTEIN COMPO-NENTS BASED ON MODERN METHODS OF THE MATHEMATICAL MOD-ELING

Berdnova Ekaterina Vladimirovna, Candidate of Pedagogical Sciences, Associate Professor of the chair "Economic cybernetics", Saratov State Agrarian University named after N.I. Vavilov. Russia.

Giro Tatyana Mihajlovna, Doctor of Technical Sciences, Professor of the chair "Technology of Production and Processing of Livestock Products", Saratov State Agrarian University named after N.I. Vavilov. Russia.

Korsunov Vladimir Petrovich, Doctor of Technical Sciences, Professor of the chair "Mathematics and Mathematical Modeling", Saratov State Agrarian University named after N.I. Vavilov. Russia.

Zubov Sergey Sergeevich, Post-graduate Student of the chair "Technology of Production and Processing of Livestock Products", Saratov State Agrarian University named after N.I. Vavilov. Russia.

Korsunova Evgeniya Nikitichna, Candidate of Medical Sciences, Assistant of the chair "Faculty Therapy", Saratov State Medical University named after V.I. Razumovsky. Russia.

Keywords: by-products of 2nd category; trace elements; vitamins; minerals; recipe calculation; math modeling.

Taking into account the resources and dietary properties of low-priced by-products of 2nd category, the authors have developed a nutrient-balanced formulation of products with a limited content of essential trace elements for the prevention of dismicroelementosis in the framework of the innovative product "Povolzhsky". Integrated processing of low-grade by-products will increase the profitability of production, will contribute to the introduction of non-waste technologies and ensuring the biological balance.

11

