СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ПРИПОВЕРХНОСТНОГО ДОЖДЕВАНИЯ НА ДМ «ФРЕГАТ»

РЫЖКО Николай Федорович, Волжский научно-исследовательский институт гидротехники и мелиорации РЫЖКО Наталья Васильевна, Волжский научно-исследовательский институт гидротехники и мелиорации РЫЖКО Сергей Николаевич, Волжский научно-исследовательский институт гидротехники и мелиорации БОТОВ Сергей Васильевич, ООО «Наше дело»

Для улучшения качественных показателей и снижения интенсивности дождя ДМ «Фрегат» разработана дождевальная насадка со съемным дефлектором и усовершенствованы устройства приповерхностного дождевания, обеспечивающие увеличение ширины захвата полива и снижение мощности дождя машины. Показано улучшение агротехнических показателей полива дождевальной машины. Установлено влияние качественных показателей полива ДМ «Фрегат» на урожайность сельскохозяйственных культур.

Введение. В настоящее время эффективное и устойчивое производство сельскохозяйственной продукции возможно при широком использовании орошаемых земель. Более 70 % всех сельскохозяйственных угодий Российской Федерации и около 80 % пашни расположено в зонах недостаточного или неустойчивого увлажнения атмосферными осадками с часто повторяющимися засухами. Широкое применение оросительных мелиораций требует согласования экологических ограничений с механизированной технологией полива дождеванием.

Большинство существующих оросительных систем ориентировано на проведение полива широкозахватными дождевальными машинами. В России доля многоопорных дождевальных машин кругового действия типа «Фрегат», «Кубань-ЛК», «Каскад» и аналогичных иностранных машин постоянно увеличивается. Дождевальные машины «Фрегат» имеют ряд значительных преимуществ: круглосуточный полив в автоматическом режиме; высокая производительность при обслуживании одним оператором 3-4 машин; простая конструкция; значительный срок службы базовых элементов и др. Однако для этих машин характерным является резкое увеличение интенсивности дождя во второй половине трубопровода, что приводит к образованию на поле луж, перераспределению дождя по элементам рельефа. Все это вызывает неравномерность увлажнения почвы. Дождевальные аппараты в конце трубопровода ДМ «Фрегат» формируют дождевое облако с большой средней и действительной интенсивностью дождя (0,6...0,8 и 2,6...3,0 мм/мин соответственно), диаметр капель в конце струи увеличивается до 2,5...3,5 мм [3]. Если на машине смонтированы дефлекторные насадки, то средняя интенсивность дождя увеличивается до 1,4 мм/мин. Дождь во второй половине трубопровода как дождевальных аппаратов, так и дефлекторных насадок оказывает значительное энергетическое воздействие на почву, разрушая и уплотняя ее верхний слой. Машина не может выдавать оптимальные поливные нормы без стока, на склоновых участках наблюдается эрозия почвы.

Исследования работы многоопорных ДМ «Фрегат» показали, что потери воды на испарение и снос ветром в среднем составляют 10...15 %, а в дневные часы могут достигать 20...30 % и более [1, 5]. Значительные потери воды обусловлены большой высотой подъема дождевого облака над поверхностью почвы (до 4...8 м – при поливе среднеструйными дождевальными аппаратами и 3...4 м – при поливе дефлекторными насадками), а также сносом дождя при ветре.

Исследования работы ДМ «Фрегат» показали, что равномерность полива при ветре низкая (коэффициент эффективного полива уменьшается с 0,70 до 0,53... 0,45), что вызвано большой высотой подъема струй и их сносом при ветре [2, 4].

Для повышения равномерности полива машины необходима более точная настройка дождевателей на требуемый расход воды, снижение высоты подъема дождевого облака и повышение перекрытие дождевых струй в начале машины.

Для снижения потерь воды на испарение и снос, повышения равномерности полива при ветре и уменьшения энергетического воздействия дождя на почву на дождевальных машинах российского и иностранного производства применяют устройства приповерхностного дождевания (УПД), которые позволяют снизить высоту установки дождевателей относительно трубопровода машины. В настоящее время проведены исследования и запатентовано несколько типов УПД, которые применяются на дождевальных машинах.

Недостаток УПД (патент № 2328849) в том, что дефлекторная насадка создает значительный реактивный момент от выходящей струи и поэтому устанавливается только на металлических трубах, что увеличивает массу устройства, также происходит размораживание чугунных угольников во время зимнего хранения в поле, а коррозия резьбовых соединений вызывает затруднения при проведении регулировки высоты установки дождевателя.

Устройство приповерхностного дождевания (патент № 178776), снабженное дождевальной насадкой с дефлектором «обратный конус», изготавливается из напорного рукава или полипропиленовой трубы, однако для вертикального положения насадки требуется установка груза значительной массы – 1...1,5 кг. Так как УПД с дождевальными насадками устанавливаются на тросах на расстояние не более 1,5 м от трубопровода машины, увеличение ширины захвата дождем незначительное.

Применяемые на ДМ «Фрегат» устройства приповерхностного дождевания с иностранными дождевателями типа i-wob и Nelson, установленными на напорных рукавах, сложно регулировать по высоте. Такие насадки, работающие при небольшом давлении (порядка 0,1 МПа), формируют дождь большой крупности капель и интенсивности, что вызывает образование луж и значительное перераспределение воды по элементам рельефа поля. Также стоимость таких насадок в несколько раз выше, чем у отечественных дождевальных насадок.

Методика исследований. Одним из способов снижения интенсивности дождя и повышения качества полива дождевальной машины является усовершенствование конструкции дождевальной насадки и устройств приповерхностного дождевания. В Волж-НИИГиМ разработана дождевальная насадка кругового полива со съемным дефлектором из полимерного материала (заявка № 2018124423, рис. 1), состоящая из корпуса 1, двух ножек 2, к которым прикреплен дефлектор 3, внутренняя часть которого плоская, а края подняты, что обеспечивает угол вылета струи порядка 15° к горизонтальной плоскости. Дождевальная насадка со съемным дефлектором снабжена грузом 4 для обеспечения ее вертикального положения при поливе.

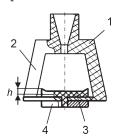


Рис. 1. Дождевальная насадка со съемным дефлектором

Дождевальная насадка формирует мелкокапельный дождь, так как на сходе с дефлектора формируется пленка, толщина которой в несколько раз меньше, чем у струйных аппаратов. Дождевальная насадка практически не создает реактивный момент от выхода струи, и насадки диаметром 3...6 мм работают без груза. На насадки диаметром 7...10 мм устанавливают груз небольшой массы (0,3...0,5 кг).

В ВолжНИИГиМ разработано усовершенствованное устройство приповерхностного полива (рис. 2), которое монтируется на пролетах машины и состоит из напорного рукава 2, верхний конец которого закреплен на патрубке 3 напорного трубопровода 1. На нижнем конце напорного рукава 2 установлена труба 4 с жестким кронштейном 5, который прикрепляется к горизонтальному тросу 6 при помощи одного из зацепов 7. На втором конце трубы 4 установлен короткий рукав 8 с трубкой 9 и дождевальной насадкой 10. Труба 4 и трубка 9 соединены между собой фиксатором 11 вертикального положения дождевальной насадки 10.

Устройства приповерхностного дождевания, которые монтируются на дождевальной машине в районе тележек (рис. 3), состоят из напорного рукава 2, верхний конец которого закреплен на патрубке 3 напорного трубопровода 1. На нижнем конце напорного рукава 2 с помощью хомута монтируется труба 4 с тросо-цепочным фиксатором 13, который жестко соединяется с вертикальным тросом машины или кронштейном 11. На нижнем конце трубы 4 установлен короткий напорный рукав 7 с короткой трубой 8 и секторной насадкой 10 (или насадкой контурного полива). Труба 4 и короткая труба 8 соединены между собой жестким фиксатором 9 требуемого положения насадки 10. К патрубку 3 приварен вертикальный кронштейн 11, который тросо-цепочным фиксатором 13 соединен с кронштейном 12. На трубе 4 монтируется ограничитель 5 разворота устройства приповерхностного дождевания в горизонтальной плоскости.

Результаты исследований. Применение усовершенствованных УПД с трубой длиной 1,5 м позволяет увеличить ширину установки дождевальных насадок от-

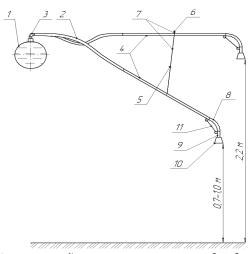


Рис. 2. Схема устройства приповерхностного дождевания, монтируемого на пролете ДМ «Фрегат»

носительно трубопровода машины (вперед и назад) до 2,2 м. Расстояние между насадками при этом увеличивается до 4,4 м. С учетом расстояния от i-й насадками до трубопровода машины L, и радиуса полива насадки R, ширину захвата дождем машины B_i определяют по формуле

$$B_i = 2(R_i + L_i). (1$$

Среднюю интенсивность дождя і насадки рассчитывают по формуле

$$\rho_i = 60 \frac{g_i}{L_H B_i},\tag{2}$$

где $q_{\scriptscriptstyle i}$ – расход воды i-й насадки, л/с; $L_{\scriptscriptstyle \rm H}$ – расстояние между дождевальными насадками на трубопроводе машины, м.

Среднюю мощность дождя *N* определяют по формуле Г.И. Швебса:

$$N = 0.0083 \rho_i V_i^2 = 0.14 \rho_i d_i, \tag{3}$$

где d_i – средний диаметр капель дождя i-й насадки, мм.

Использование на ДМ «Фрегат» усовершенствованных УПД позволяет снизить мощность дождя в 1,2-1,5 раза по сравнению с дефлекторными насадками, установленными в линию на трубопроводе машины (табл. 1).

Основные преимущества разработанных УПД: простота конструкции и изготовления; незначительные трудозатраты на монтаж и регулировку высоты расположения дождевальных насадок от поверхности почвы; небольшая стоимость; плавная подача воды к насадке, что обеспечивает снижение гидравлических потерь напора; полный слив воды из трубопровода после отклю-

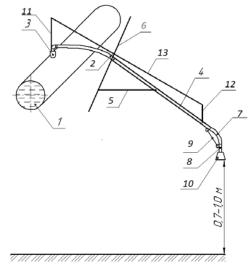


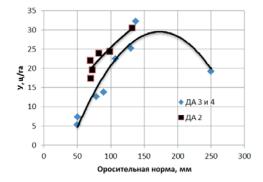
Рис. 3. Схема устройства приповерхностного дождевания, монтируемого в районе тележек ДМ «Фрегат»

Изменение мощности дождя для различных типов дождевателей вдоль трубопровода дождевальной машины «Фрегат», марка ДМУ-Б-463-90

Пролет между	Расход воды	Средняя мощность дождя, Вт/м², пр поливе дефлекторными насадками установленными на				
тележка- ми	дождева- теля, л/с	трубопроводе дождевальной машины	устройствах приповер- хностного дождевания при Вн=4,4 м			
2-3	0,25	0,020	0,013			
5-6	0,536	0,045	0,035			
8-9	1,0	0,058	0,045			
12-13	1,536	0,086	0,072			
15-16	1,932	0,115	0,094			

чения машины; относительно небольшой дополнительный груз для вертикального расположения насадки.

В дальнейшем данную схему устройства приповерхностного дождевания можно использовать для увеличения до 3...4 м ширины установки дождевальных насадок относительно трубопровода машины и до 6...8 м – расстояния между насадками.


Снижение мощности дождя уменьшает лужеобразование и перераспределение оросительной воды по элементам рельефа участка. Влажность почвы в 0–40 см слое на более высоких участках при большой мощности дождя (0,09 Вт/м²) ДМ «Фрегат» с дефлекторными насадками и норме полива 400 м³/га составляла 22–23 %, а на микропонижениях – увеличивалась до 25–27 %, Неравномерность влажности почвы составляет 14–22 % (ОПХ «ВолжНИИГиМ», ООО «Липовское»). При уменьшении мощности дождя неравномерность увлажнения почвы снижается до 6–12 % (ООО «Липовское»).

Значительную мощность дождя и уплотнение почвы вызывает перераспределение дождя, что в свою очередь вызывает пестроту и недобор урожая. Исследования в ЗАО «Энгельссское» при поливе ДМ «Фрегат» показали, что в первой половине трубопровода машины при поливе дождевальными аппаратами «Фрегат» 2 и 3 дождем малой мощности урожайность составляет 27,6...26 ц/га. Во второй половине трубопровода машины при поливе дождевальными аппаратами «Фрегат» 3 и 4 дождем большой мощности урожайность составляет 20,6...18,1 ц/га, а в зоне полива концевого аппарата «Фрегат» 5 – 17,8...10,4 (табл. 2). При поливе дождем большой мощности во второй половине трубопровода и при недополиве этих участков урожайность составляет всего 0,64...0,37 от максимальной величины урожайности, т.е. снижается на 36...63 %.

Большая мощность дождя при поливе дождевальными аппаратами «Фрегат» 3, 4 и 5 вызывает сток и эрозию почвы на уклонах, что в совокупности с недополивом приводит к снижению урожая ячменя (ЗАО «Энгельсское») под концевой частью машины, что составляет 0,38...0,19 максимальной величины урожайности в начале машины.

Исследования в АО «Ленинское» при поливе ДМ «Фрегат» кукурузы на силос и ячменя (рис. 4) показа-

ли, что максимальная урожайность культур получена при оптимальной поливной норме дождем небольшой мощности (аппараты «Фрегат» 1 и 2). Урожайность в зоне полива дождем большей мощности (аппаратов «Фрегат» 3 и 4) снижается на 5...20 %.

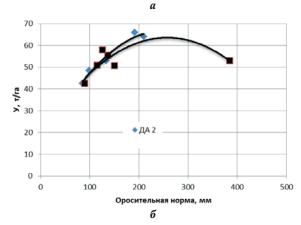
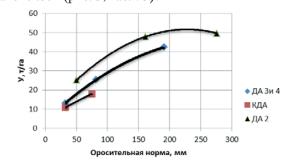
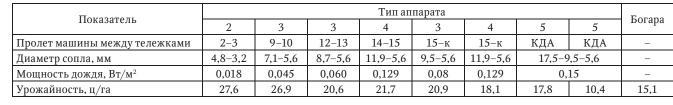



Рис. 4. Урожайность ячменя (а) и кукурузы на силос (б) в зависимости от оросительной нормы и типа дождевальных аппаратов ДМ «Фрегат»

Аналогичные результаты урожайности кукурузы на силос и яровой пшеницы были получены при поливе дождевальной машиной «Фрегат» в ТОО «Расскатовское» (рис. 5, табл. 3).


Puc. 5. Урожайность кукурузы на силос в зависимости от оросительной нормы и типа дождевальных аппаратов ДМ «Фрегат»

Обработкой опытных данных по яровой пшенице установлена зависимость для расчета урожайности в зависимости от характеристик полива ДМ «Фрегат»:

$$\mathbf{y}_{i} = \mathbf{y}_{6} + \mathbf{y}_{M} \mathbf{K}_{y},$$

где y_i – урожайность, полученная при определенной характеристике дождя, ц/га; y_6 , $y_{_{\rm M}}$ – урожайность на

Таблица 2 Урожайность озимой пшеницы в зависимости от мощности дождя при поливе дождевальной машиной «Фрегат»

Урожайность кукурузы на силос в зависимости от оросительной нормы и мощности дождя при поливе дождевальной машиной «Фрегат»

Тип аппарата	Диаметр сопла, мм	Давление на выходе струи, МПа	Средняя интенсивность дождя, мм/мин	Средний диаметр капель, мм	Мощность дождя, $Bт/м^2$	Оросительная норма, мм	Урожайность, т/га
2	4,8-2,4	0,55	0,174	0,74	0,018	164,0	47,8
3	7,1-4,8	0,52	0,321	0,96	0,043	272,0	49,6
3	6,3-4,8	0,30	0,100	1,60	0,070	32,0	13,1
3	7,1-5,6	0,40	0,451	1,15	0,072	191,2	42,3
4	10,3-5,6	0,34	0,357	1,62	0,081	82,4	25,2
5, КДА	17,5-9,5-5,6	0,25	0,465	2,30	0,150	32,0	10,8

богарном участке и максимальная при орошении, ц/га; К. – коэффициент урожайности.

$$K_{y} = \left(1 - 0.0625 \cdot \left[4\left(1 - \frac{M_{i}}{M_{0}}\right)\right]^{2}\right) \times$$

$$\times (0.7 + 0.3 \cdot e^{-4N}) \cdot (1.04 - 0.00875KB)$$

где M_i и M_o — оросительная норма на i-м участке и оптимальная, мм; N — мощность дождя на i-м участке, $B T/m^2$; K B — коэффициент вариации слоя дождя в зоне работы основного дождевателя, поливаемого i-й участок, %.

Применение УПД с дефлекторными насадками, смонтированными в линию вдоль трубопровода ДМ «Фрегат» в ООО «Березовское», обеспечило снижение потерь воды на испарение и снос в среднем на 20 % и повышение равномерности полива при ветре на 10...15 %. Замеры показали, что средняя урожайность сои в зоне полива УПД составила 41,8 ц/га, а в зоне полива дефлекторных насадок, установленных на трубопроводе, — 36 ц/га, т.е. меньше на 16 %.

Применение на ДМ «Фрегат» усовершенствованных УПД с увеличенной до 4,4 м шириной разброса насадок (в стороны относительно трубопровода) снижает интенсивность и мощность дождя на 20...50 %, уменьшает потери воды на испарение и унос ветром на 10...20 %, а также обеспечивает повышение равномерности полива при ветре на 8...15 %. Все это будет способствовать повышению урожайности сельскохозяйственных культур в зоне концевой части машин на 36 до 48 % в зависимости от вида и уклонов рельефа. В целом по машине повышение урожайности может составить 18...24 %. При эксплуатации УПД оператор может легко проводить очистку сопла насадки от мусора. Усовершенствованные устройства приповерхностного дождевания окупаются в первый год эксплуатации.

Заключение. Разработана и внедрена дождевальная насадка со съемным дефлектором, которая формирует мелкокапельный и ветроустойчивый дождь. При ее изготовлении не создается облой на кромке дефлектора, что минимизирует реактивный момент от выходящей струи.

Разработано усовершенствованное УПД, которое просто в изготовлении, более дешевое в изготовлении, минимизирует гидравлические потери и обеспе-

чивает полный слив воды после отключения дождевальной машины.

Увеличение ширины захвата дождем при поливе УПД обеспечивает улучшение качественных показателей полива, снижение интенсивности и мощности дождя на 20...50 %, уменьшение потерь воды на испарение и унос ветром на 10...20 % и повышение равномерности полива при ветре на 8...15 %, что в свою очередь обусловливает повышение урожайности сельскохозяйственных культур на 18...24 %.

СПИСОК ЛИТЕРАТУРЫ

- 1. Нагорный В.А., Рыжко Н.Ф. Повышение эффективности полива ДМ «Фрегат» при использовании новых дождеобразующих устройств // Вестник Саратовского госагроуниверситета им. Н.И. Вавилова. 2009. \mathbb{N}^2 2. С. 54–56.
- 2. Рыжко Н.Ф., Угнавый В.Л., Рыжко Н.В. Применение дефлекторных насадок и дождевальных аппаратов из полимерных материалов на ДМ «Фрегат» и «Волжанка» // Проблемы мелиорации и пути их решения: сб. науч. тр. М., 2001. Кн. 1. С. 142–147.
- 3. Рыжко Н.Ф. Совершенствование дождеобразующих устройств для многоопорных дождевальных машин. Саратов, 2009. 176 с.
- 4. *Рыжко Н.Ф.* Моделирование полета струй дождевальных аппаратов и дефлекторных насадок // Научное обозрение. -2011. № 5. С. 198-203.
- 5. Федосеев В.К., Рыжко Н.Ф. Дождеформирующие аппараты для «Фрегата» // Мелиорация и водное хозяйство. 1995. № 2. С. 39–40.

Рыжко Николай Федорович, д-р техн. наук, зав. отделом, Волжский научно-исследовательский институт гидротехники и мелиорации. Россия.

Рыжко Наталья Васильевна, старший научный сотрудник, Волжский научно-исследовательский институт гидротехники и мелиорации. Россия.

Рыжко Сергей Николаевич, младший научный сотрудник, Волжский научно-исследовательский институт гидротехники и мелиорации. Россия.

413123, Саратовская обл., г. Энгельс, ул. Гагарина, 1. Тел.: (8453) 75-44-20.

Ботов Сергей Васильевич, ООО «Наше Дело». Россия. 413090, Саратовская обл., г. Маркс, просп. Ленина, 100/2. Тел.: (8456)75-10-01.

Ключевые слова: устройство приповерхностного дождевания; интенсивность дождя; качество полива; мощность дождя; урожайность.

AN IMPROVEMENT OF NEAR-SURFACE IRRIGATION TECHNOLOGY USING A SPRINKLING MACHINE "FRIGATE"

Ryzhko Nickolay Fedorovich, Doctor of Technical Science, Head of the Department, Volzhsky Research Institute of Hydraulic Engineering and Melioration. Russia.

Ryzhko Natalia Vasilyevna, Senior Researcher, Volzhsky Research Institute of Hydraulic Engineering and Melioration. Russia.

Ryzhko Sergey Nickolayevich, Junior Researcher, Volzhsky Research Institute of Hydraulic Engineering and Melioration.
Russia

Botov Sergey Vasilyevich, OOO "Nashe Dyelo". Russia.

Keywords: near-surface irrigation device; rain intensity; irrigation quality; crop yields.

A sprinkler nozzle with a removable deflector were developed and near-surface irrigation devices were improved which increase the width of the watering, what improved irrigation quality indicators and decreased the rain intensity of a sprinkling machine "Frigate". An improvement of sprinkling machine agrotechnical indices is shown. The influence of "Frigate" Sprinkling Machine irrigation quality indicators on the crop yields was established.

