Sources of spring common wheat resistance to powdery mildew

Authors

  • Danil Fidusovich Askhadullin Tatar Scientific Research Institute of Agriculture, FRC Kazan Scientific Center, RAS
  • Damir Fidusovich Askhadullin Tatar Scientific Research Institute of Agriculture, FRC Kazan Scientific Center, RAS
  • Nurania Zufarovna Vasilova Tatar Scientific Research Institute of Agriculture, FRC Kazan Scientific Center, RAS
  • Evgeny Valerievich Zuev FRC N.I.Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
  • Ilsina Ilnurovna Khusainova Tatar Scientific Research Institute of Agriculture, FRC Kazan Scientific Center, RAS

DOI:

https://doi.org/10.28983/asj.y2022i10pp10-15

Keywords:

wheat, powdery mildew, disease resistance, variety, virulence

Abstract

Effective breeding work to create disease-resistant wheat varieties provides for regional, retrospective studies to determine effective sources of resistance. One of the most harmful and globally significant wheat diseases is powdery mildew. In the conditions of Tatarstan, located in the Volga economic region of Russia, the mass development of powdery mildew on spring common wheat is noted annually, regardless of the prevailing weather conditions. The prevailing high natural infectious background allows us to objectively differentiate spring wheat samples by disease resistance. The purpose of our research was to search for sources of resistance to powdery mildew among the samples of spring common wheat of the VIR collection, which retain stability for a long time. The studies were conducted in the period from 2011 to 2021. In total, during the entire period, the resistance to powdery mildew of 702 samples was studied in the conditions of the Pre-Kama zone of the Republic of Tatarstan. The reaction of the samples was evaluated to a natural population of the fungus Blumeria graminis f. sp. tritici, caused by powdery mildew of wheat. The screening of spring common wheat samples for the period from 2011 to 2020 allowed us to identify sources of field resistance to powdery mildew that retain their effectiveness for a long time: Tybalt (k-64897, Netherlands), Zebra (k-64707, Sweden), CH Rubli (k-65003, Germany), Visa (k-64390, Belarus). During this period, there was a decrease in the resistance of spring common wheat samples to powdery mildew from 3.5 points in 2011-2015 to 4.6 points in 2016-2020 (on a 9-point scale). At varietals: Toma (k-66193), Sudarynya (k-6647), Laska (k-66421) from Belarus; KWS Torridon (k-66273, UK); Tybalt (k-64897, Netherlands); Griwa (k-66701), Zura (k-66702) from Poland; Florens (k-66391, France); Odeta (66394, Czech Republic); Lavett (k-66095), Boett (k-66353) from Sweden no symptoms of powdery mildew were recorded in 2019-2021. The collection of Russian varieties and varieties from the countries of the former USSR (except Belarus) is poor in resistant varieties, only two varieties of Barakat and Sitara from Tatarstan turned out to be highly resistant. Resistant to B. graminis samples mainly originate from the European part of the world (band: Great Britain ?Belarus), approximately in geographical coordinates - 50...55? north latitude.

Downloads

Download data is not yet available.

References

Дерова Т.Г., Шишкин Н.В. Оценка устойчивости сортов озимой пшеницы к основным болезням при экологическом испытании в Ростовской области // Зерновое хозяйство России. 2018. № 1. С. 70–72. https://doi.org/10.31367/2079-8725-2018-55-1-70-72.

Керимова Ш.Р. Влияние заболевания мучнистой росой на продуктивность и показатели качества пшеницы // Аграрная наука. 2020. № 7–8. С. 118–121. https://doi.org/10.32634/0869-8155-2020-340-7-118-121.

Киселева М.И., Коломиец Т.М., Пахолкова Е.В., Жемчужина Н.С., Любич В.В. Дифференциация сортов озимой мягкой пшеницы (Triticum aestivum L.) по устойчивости к наиболее вредоносным возбудителям грибных болезней // Сельскохозяйственная биология. – 2016. Т. 51. № 3. С. 299–309. https://doi.org/10.15389/agrobiology.2016.3.299rus.

Кривченко В.И., Лебедева Т.В. Пеуша Х.О. Мучнистая роса злаков / Изучение генетических ресурсов зерновых культур по устойчивости к вредным организмам: метод. пособие. М., 2008. С. 86-105.

Лебедева Т.В., Брыкова А.Н., Зуев Е.В. Устойчивость к мучнистой росе скандинавских образцов яровой мягкой пшеницы из коллекции ВИР // Труды по прикладной ботанике, генетике и селекции. 2020. Т. 181. № 3. С. 146–154. https://doi.org/10.30901/2227-8834-2020-3-146-154

Лебедева Т.В., Зуев Е.В., Брыкова А.Н. Перспективность использования современных европейских сортов яровой мягкой пшеницы для селекции на устойчивость к мучнистой росе в Северо-Западном регионе РФ // Труды по прикладной ботанике, генетике и селекции. 2019. Т. 180. № 4. С. 170–176. https://doi.org/10.30901/2227-8834-2019-4-170-176.

Лебедева Т.В., Зуев Е.В., Брыкова А.Н. Проявление устойчивости к мучнистой росе у образцов яровой мягкой пшеницы из коллекции генетических ресурсов растений ВИР // Труды по прикладной ботанике, генетике и селекции. 2018. T. 179. № 3. С. 272–277. https://doi.org/10.30901/2227-8834-2018-3-272-277.

Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований). М., 1985. 351с.

Назарова Л.Н., Полякова Т.М., Жохова Т.П., Корнева Л.Г. Фитосанитарное состояние посевов пшеницы в России в 2006–2010 гг. // Защита и карантин растений. 2012. № 6. С. 39–43.

Санин С.С., Ибрагимов Т.З., Стрижекозин Ю.А. Метод расчета потерь урожая пшеницы от болезней // Защита и карантин растений. 2018. № 1. С. 11-15.

Сочалова Л.П., Пискарев В.В. Устойчивость сортов яровой мягкой пшеницы к возбудителям инфекционных заболеваний в условиях изменяющегося климата Западной Сибири // Достижения науки и техники АПК. 2017. Т. 31. № 2. С. 21–25.

Bousset L., de Vallavieille-Pope C. Effect of Sexual Recombination on Pathotype Frequencies in Barley Powdery Mildew Populations of Artificially Inoculated Field Plots // European Journal of Plant Pathology. 2003. No. 109. No. 1. P. 13–24. https://doi.org/10.1023/A:1022034829401.

Cowger C., Mehra L., Arellano C., Meyers E., Murphy J.P. Virulence Differences in Blumeria graminis f. sp. tritici from the Central and Eastern United States // Phytopathology. 2018. Vol. 108. P. 402–411. https://doi.org/10.1094/PHYTO-06-17-0211-R.

Draz I.S., Esmail S.M., Abou-Zeid M.A.E.-H., Essa T.A.E.-M. Powdery mildew susceptibility of spring wheat cultivars as a major constraint on grain yield // Annals of Agricultural Sciences. 2019. Vol. 64. No. 1. P. 39–45. https://doi.org/10.1016/j.aoas.2019.05.007.

Goriewa-Duba K, Duba A, Suchowilska E, Wiwart M. An Analysis of the Genetic Diversity of Bread Wheat x Spelt Breeding Lines in Terms of Their Resistance to Powdery Mildew and Leaf Rust // Agronomy. 2020. No. 10(5). P. 658 (1-21). https://doi.org/10.3390/agronomy10050658.

Hysing S.-C., Merker A., Liljeroth E., Koebner R. M. D., Zeller F. J., Hsam S. L. K. Powdery mildew resistance in 155 Nordic bread wheat cultivars and landraces // Hereditas. 2007. Vol.144. No. 3. P. 102-119. https://doi.org/10.1111/j.2007.0018-0661.01991.x.

McIntosh R.A., Yamazaki Y., Dubcovsky J., Rodgers W.J., Morris C., Somers D.J., Appels R., Devos K.M. Catalogue of Gene Symbols for Wheat / Proceedings of the 11th International. Wheat Genetics Symposium. 24-29 August, Brisbane, Australia. 2008.

Morgounov A., Tufan H. A., Sharma R., Akin B., Bagci A., Braun H.-J., Kaya Y., Keser M., Payne T. S., Sonder K., McIntosh R. Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1 // European Journal of Plant Pathology. 2012. Vol. 132. P. 323–340. https://doi.org/10.1007/s10658-011-9879-y.

Saari E. E., Prescott J. M. A scale for appraising the foliar intensity of wheat diseases // Plant disease reporter. 1975. No. 59. P. 377–380.

Samobor V., Vukobratovi? M., Jo?t M. Effect of powdery mildew attack on quality parameters and experimental bread baking of wheat // Acta agriculturae Slovenica. 2006. Vol. 87. No. 2. Р. 381–391.

Tang X., Cao X., Xu X., Jiang Y. , Luo Y., Ma Z., Fan J., Zhou Y. Effects of Climate Change on Epidemics of Powdery Mildew in Winter Wheat in China // Plant Disease. 2017. Vol. 101. No. 10. P. 1753–1760. https://doi.org/10.1094/PDIS-02-17-0168-RE.

Vielba-Fern?ndez A., Polonio ?., Ruiz-Jim?nez L., de Vicente A., P?rez-Garc?a A., Fern?ndez-Ortu?o D. Fungicide Resistance in Powdery Mildew Fungi // Microorganisms. 2020. No. 8(9). P. 1431(1–34). https://doi.org/10.3390/microorganisms8091431.

Wicker T., Oberhaensli S., Parlange F. Buchmann J. P., Shatalina M., Roffler S., Ben-David R., Dole?el J., ?imkov? H., Schulze-Lefert P., Spanu P. D., Bruggmann R., Amselem J., Quesneville H., van Themaat E. V. L., Paape T., K. K. Shimizu, Keller B. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genetics. 2013. Vol. 45. No.9. P. 1092–1096. https://doi.org/10.1038/ng.2704.

Wu X.X., Xu X.F., Ma D.X., Chen R.Z., Li T.Y., Cao Y.Y. Virulence structure and its genetic diversity analyses of Blumeria graminis f. sp. tritici isolates in China // BMC Evolutionary Biology. 2019. No. 19. P. 183(1–12). https://doi.org/10.1186/s12862-019-1511-3.

Published

2022-10-27

Issue

Section

Agronomy

Most read articles by the same author(s)